Symbolic execution
A middle grounad

» TJesting works: reported bugs are real bugs
But, each test only explores one possible execution
- assert(f(3) ==5)
In short, complete, but not sound

- We hope test cases generalize, but no guarantees

Symbolic execution generalizes testing
“More sound” than testing
- Allows unknown symbolic variables a in evaluation
-y = a; assert(f(y) == 2*y-1);
If execution path depends on unknown, conceptually

fork symbolic executor
int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }

Symbolic execution example

1. inta=qa,b=B,c=Y;
2. /I symbolic
3.intx=0,y=0,z=0;
4. if (a) {

5. X=-2;

6. }

7. if(b<b5){

8. if(la&&c) {y=1;}
9. z=2;

10.}

11.assert(x+y+z !=3)

x=0, y=0, z=0
I

. _a
/ *
X=-2 B<S

| RN
B<5 “AAY
N AN
z=2 y=1 z=2
| an(B=5) | |

z=2

—aA(B=5)

G/\(B<5) |

X —aA(B<B)A-y
\ ~an(B<B)AY

path condition

Insight

« Each symbolic execution path stands for many

actual program runs
In fact, exactly the set of runs whose concrete values
satisfy the path condition

 Thus, we can cover a lot more of the program’s
execution space than testing

* Viewed as a static analysis, symbolic execution is
- Complete, but not sound (usually doesn’t terminate)
Path, flow, and context sensitive

A Little History

The idea Is an old one

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT-
a formal system for testing and debugging programs by
symbolic execution. In ICRS, pages 234-245, 1975.

James C. King. Symbolic execution and program testing.
CACM, 19(7):385-394, 1976. (most cited)

Leon J. Osterweil and Lloyd D. Fosdick. Program testing
techniques using simulated execution. In ANSS, pages 171-
177, 1976.

William E. Howden. Symbolic testing and the DISSECT
symbolic evaluation system. |[EEE Transactions on Software
Engineering, 3(4):266-278, 1977.

Why didn'’t it take off?

- Symbolic execution can be compute-intensive
- Lots of possible program paths

- Need to query solver a lot to decide which paths are
feasible, which assertions could be false

- Program state has many bits

« Computers were slow (not much processing power)
and small (not much memory)
- Recent Apple iPads are as fast as Cray-2’s from the 80’s

Today

« Computers are much faster, bigger

« Better algorithms too: powerful SMT/SAT solvers
- SMT = Satisfiability Modulo Theories = SAT++

« Can solve very large instances, very quickly
- Lets us check assertions, prune infeasible paths

Hardware improvements

1E+18
Dongarra and Luszczek, Anatomy of a Globally Recursive
1E+16 Embedded LINPACK Benchmark, HPEC 2012. © fc‘i@go
http://web.eecs.utk.edu/~luszczek/pubs/hpec2012_elb.pdf .égof.% &4
] eg%)é,
1E+14 Z8
s,
o O/’%.
1E+12 m < %
i = 3%,
[1] é’ u S OO
n R "% %
1E+10 s Cq B %9 %
% oS % s, %, %
u *—kz %o u Qa@%@eﬁ%&’o
(4
1E+8 [o,% ’0 R
0049@ 7 %
nm %,
2%
1E+6 S m G s
L 6’0
%
1E+4 .
&
u %’vo/%o
1E42 z...
1E+%
1950 1960 1970 1980 1990 2000 2010 2020
HPEC 2012
Waltham, MA

Sentember 10-12. 2012

SAT algorithm improvements

1000
800

600 Small Problem

400 ® Big Problem

Seconds

200

0
2002 2004 2006 2008 2010

Winner Year

Results of SAT competition winners (2002-2010)
on SAT’'09 problem set, on 2011 hardware

Rediscovery

» 2005-2006 reinterest in symbolic execution

* Area of success: (security) bug finding
- Heuristic search through space of possible executions
- Find really interesting bugs

Basic symbolic execution

Symbolic variables

« Extend the language’s support for expressions e to
include symbolic variables, representing unknowns

e=a|n|X|et+tei|eoser|e&&e1]...
 ne N =integers, X € Var = variables, o« € SymVar

« Symbolic variables are introduced when reading input
Using mmap, read, write, fgets, etc.
- So if a bug is found, we can recover an input that
reproduces the bug when the program is run normally

Symbolic expressions

 We make (or modify) a language interpreter to be
able to compute symbolically
- Normally, a program’s variables contain values

- Now they can also contain symbolic expressions
- Which are expressions containing symbolic variables

 Example normal values:
- 5, "hello”

« Example symbolic expressions:
- o+5, “hello”+«, a[ax+B+2]

Straight-line execution

— X = read();

y =5 + x;

z =7 + vy;

afz] = 1;
Concrete Memory Symbolic Memory
X —» 5 X - O
y » 10 Yy P 5+
z » 17 z > 1240
a+~» {0,0,0,0} a~» {0,0,0,0}
Overrun! Possible overrun!

We'll explain arrays shortly

Path condition

« Program control can be affected by symbolic values
X = read();
if (x>5) {
y = 6;
if (x<10)
y = 5;
} elsey = 0;

A U W N

« We represent the influence of symbolic values on the
current path using a path condition 1t
- Line 3 reached when a>5
+ Line 5 reached when a>5 and a<10
- Line 6 reached when a<b

Path feasibility

« Whether a path is feasible is tantamount to a path
condition being satisfiable

1
2
3
4
5
6

X = read();

if (x>5) {
y = 6; T = a>5
if (x<3)

b else y = 0i] m=a<5 Not satisfiable!

« Solution to path constraints can be used as inputs
to a concrete test case that will execute that path
- Solution to reach line 3: «x =6
- Solution to reach line 6: o = 2

Paths and assertions

» Assertions, like array bounds checks, are conditionals

x = read(); | TT=true
y =5 + x; TT = true
z =7 +vy; TT = true
if(z < 0) TT = true

abort(); T = [2+x<0
if(z >= 4); | mm=7(12+x<0)

abort(); T = 2(12+0<0) A [2+0=4
a[z] = 1; T = 2(12+0<0) A 2(12+0x=4)

0 N o U W N

e SO, if either lines 5 or lines 7 are reachable (i.e., the
paths reaching them are feasible), we have found an
out-of-bounds access

-0orking execution

« Symbolic executors can fork at branching points

- Happens when there are solutions to both the path
condition and its negation

* How to systematically explore both directions?
- Check feasibility during execution and queue feasible
path (condition)s for later consideration
- Concolic execution: run the program (concretely) to
completion, then generate new input by changing the
path condition

Execution algorithm

1. Create initial task
-pc=0,T=0,0=0

2. Add task (pc, 11, 0) onto worklist o0 if (p) {

3. While (list is not empty) pcl

3a. pull some task (pc, t, o) from worklist pc2 } else { .

3b. execute. if it potentially forks at (pco, TTo, 00)
3ba. add task (pci, (110 A p), Oo) if TTo A p feasible

3bb. add task (pca, (TTo A =p), O0) if TTo A —=p feasible

Note: Libraries, native code

At some point, symbolic execution will reach the
“edges” of the application
- Library, system, or assembly code calls

* |n some cases, could pull in that code also
- E.g., pullin libc and symbolically execute it

- But glibc is insanely complicated
- Symbolic execution can easily get stuck in it

- S0, pull in a simpler version of libc, e.g., newlib

* |n other cases, need to make models of code
- E.g., implement ramdisk to model kernel fs code

Concolic execution

» Also called dynamic symbolic execution

* Instrument the program to do symbolic execution
as the program runs
- Shadow concrete program state with symbolic variables

Initial concrete state determines initial path
- could be randomly generated

Keep shadow path condition

 Explore one path at a time, start to finish

- The next path can be determined by

- negating some element of the last path condition, and

- solving for it, to produce concrete inputs for the next test
- Always have a concrete underlying value to rely on

Concretization

« Concolic execution makes it really easy to concretize

Replace symbolic variables with concrete values that

satisfy the path condition
Always have these around in concolic execution

* S0, could actually do system calls
But we lose symbolic-ness at such calls

 And can handle cases when conditions too complex
for SMT solver

