
Symbolic execution
A middle ground

• Testing works: reported bugs are real bugs
• But, each test only explores one possible execution!

- assert(f(3) == 5)!
- In short, complete, but not sound!

• We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing!
• “More sound” than testing
• Allows unknown symbolic variables α in evaluation

- y = α; assert(f(y) == 2*y-1);!
• If execution path depends on unknown, conceptually

fork symbolic executor
- int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }

Symbolic execution example
1. int a = α, b = β, c = γ;!
2. // symbolic!
3. int x = 0, y = 0, z = 0;!
4. if (a) {!
5. x = -2;!
6. }!
7. if (b < 5) {!
8. if (!a && c) { y = 1; }!
9. z = 2;!
10.}!
11.assert(x+y+z != 3)

x=0, y=0, z=0

α

x=-2

z=2

✔

✘

β<5 ¬α∧γ

y=1✔

β<5

z=2

z=2

✔

✔

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

Insight
• Each symbolic execution path stands for many

actual program runs
• In fact, exactly the set of runs whose concrete values

satisfy the path condition

• Thus, we can cover a lot more of the program’s
execution space than testing

• Viewed as a static analysis, symbolic execution is
• Complete, but not sound (usually doesn’t terminate)
• Path, flow, and context sensitive

A Little History

The idea is an old one
• Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT–

a formal system for testing and debugging programs by
symbolic execution. In ICRS, pages 234–245, 1975.

• James C. King. Symbolic execution and program testing.
CACM, 19(7):385–394, 1976. (most cited)

• Leon J. Osterweil and Lloyd D. Fosdick. Program testing
techniques using simulated execution. In ANSS, pages 171–
177, 1976.

• William E. Howden. Symbolic testing and the DISSECT
symbolic evaluation system. IEEE Transactions on Software
Engineering, 3(4):266–278, 1977.

Why didn’t it take off?
• Symbolic execution can be compute-intensive!
• Lots of possible program paths
• Need to query solver a lot to decide which paths are

feasible, which assertions could be false
• Program state has many bits

• Computers were slow (not much processing power)
and small (not much memory)
• Recent Apple iPads are as fast as Cray-2’s from the 80’s

Today
• Computers are much faster, bigger

• Better algorithms too: powerful SMT/SAT solvers
• SMT = Satisfiability Modulo Theories = SAT++

• Can solve very large instances, very quickly
• Lets us check assertions, prune infeasible paths

HPEC 2012
Waltham, MA
September 10-12, 2012

1950 1960 1970 1980 1990 2000 2010 2020
1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18
Dongarra and Luszczek, Anatomy of a Globally Recursive

Embedded LINPACK Benchmark, HPEC 2012.!
http://web.eecs.utk.edu/~luszczek/pubs/hpec2012_elb.pdf

Hardware improvements

SAT algorithm improvements
Se

co
nd

s

Winner Year

0

200

400

600

800

1000

2002 2004 2006 2008 2010

Small Problem
Big Problem

Results of SAT competition winners (2002-2010)
on SAT’09 problem set, on 2011 hardware

Rediscovery
• 2005-2006 reinterest in symbolic execution

• Area of success: (security) bug finding
• Heuristic search through space of possible executions
• Find really interesting bugs

Basic symbolic execution

Symbolic variables
• Extend the language’s support for expressions e to

include symbolic variables, representing unknowns

!

!

• Symbolic variables are introduced when reading input!
• Using mmap, read, write, fgets, etc.
• So if a bug is found, we can recover an input that

reproduces the bug when the program is run normally

e ::= n | X | e0 + e1 | e0 ≤ e1 | e0 && e1 | …
• n ∈ N = integers, X ∈ Var = variables, α ∈ SymVar

α |

Symbolic expressions
• We make (or modify) a language interpreter to be

able to compute symbolically
• Normally, a program’s variables contain values
• Now they can also contain symbolic expressions

- Which are expressions containing symbolic variables

• Example normal values:
• 5, “hello”

• Example symbolic expressions:
• α+5, “hello”+α, a[α+β+2]

Straight-line execution
x = read();!
y = 5 + x;!
z = 7 + y;!
a[z] = 1;

Concrete Memory!
x � 0!
y � 0!
z � 0!
a � {0,0,0,0}

→

5

10

17

Overrun!

Symbolic Memory!
x � 0!
y � 0!
z � 0!
a � {0,0,0,0}

→

α
5+α
12+α

Possible overrun!
We’ll explain arrays shortly

Path condition
• Program control can be affected by symbolic values

!

!

!

• We represent the influence of symbolic values on the
current path using a path condition π
• Line 3 reached when α>5
• Line 5 reached when α>5 and α<10
• Line 6 reached when α≤5

1 x = read();!
2 if (x>5) { !
3 y = 6;!
4 if (x<10)!
5 y = 5; !
6 } else y = 0;

Path feasibility
• Whether a path is feasible is tantamount to a path

condition being satisfiable
1 x = read();!
2 if (x>5) { !
3 y = 6;!
4 if (x<3)!
5 y = 5; !
6 } else y = 0;

!

π = α>5
!

π = α>5 ∧ α<3
π = α≤5
π = α>5 ∧ α<3

Not satisfiable!
• Solution to path constraints can be used as inputs

to a concrete test case that will execute that path
• Solution to reach line 3: α = 6
• Solution to reach line 6: α = 2

• Assertions, like array bounds checks, are conditionals

1 x = read();!
2 y = 5 + x;!
3 z = 7 + y;!
4

Paths and assertions

a[z] = 1;

1 x = read();!
2 y = 5 + x;!
3 z = 7 + y;!
4 if(z < 0)!
5 abort();!
6 if(z >= 4);!
7 abort();!
8 a[z] = 1;

π = true
π = true
π = true
π = true
π = 12+α<0
π = ¬(12+α<0)
π = ¬(12+α<0) ∧ 12+α≥4
π = ¬(12+α<0) ∧ ¬(12+α≥4)

• So, if either lines 5 or lines 7 are reachable (i.e., the
paths reaching them are feasible), we have found an
out-of-bounds access

Forking execution
• Symbolic executors can fork at branching points
• Happens when there are solutions to both the path

condition and its negation

• How to systematically explore both directions?
• Check feasibility during execution and queue feasible

path (condition)s for later consideration
• Concolic execution: run the program (concretely) to

completion, then generate new input by changing the
path condition

Execution algorithm
1. Create initial task
 - pc = 0, π = ∅, σ = ∅
2. Add task (pc, π, σ) onto worklist
3. While (list is not empty)
 3a. pull some task (pc, π, σ) from worklist
 3b. execute. if it potentially forks at (pc0, π0, σ0)
!

pc0 if (p) { !
pc1 …!
pc2 } else { …

 3ba. add task (pc1, (π0 ∧ p), σ0) if π0 ∧ p feasible
 3bb. add task (pc2, (π0 ∧ ¬p), σ0) if π0 ∧ ¬p feasible

Note: Libraries, native code
• At some point, symbolic execution will reach the

“edges” of the application
• Library, system, or assembly code calls

• In some cases, could pull in that code also
• E.g., pull in libc and symbolically execute it
• But glibc is insanely complicated

- Symbolic execution can easily get stuck in it
• So, pull in a simpler version of libc, e.g., newlib

• In other cases, need to make models of code
• E.g., implement ramdisk to model kernel fs code

Concolic execution
• Also called dynamic symbolic execution

• Instrument the program to do symbolic execution
as the program runs
• Shadow concrete program state with symbolic variables

• Initial concrete state determines initial path
• could be randomly generated

• Keep shadow path condition!

• Explore one path at a time, start to finish
• The next path can be determined by

• negating some element of the last path condition, and
• solving for it, to produce concrete inputs for the next test

• Always have a concrete underlying value to rely on

Concretization
• Concolic execution makes it really easy to concretize
• Replace symbolic variables with concrete values that

satisfy the path condition
- Always have these around in concolic execution

• So, could actually do system calls!
• But we lose symbolic-ness at such calls

• And can handle cases when conditions too complex
for SMT solver

