
Fuzz Testing
30/04/2024



Reference:
LibAFL: A Framework to build modular and
reusable fuzzers.

A. Fioraldi, D. Maier, D. Zhang, D. Balzarotti
CCS 2022



Fuzzers are tools designed to execute a target application
with a large number of automatically-generated inputs,
with the goal of discover problematic states (crashes,
exceptions, non termination), often associated with security
vulnerabilities.

What is Fuzzing

Evolution of the testcase
with subsequent mutations



Syzkaller

AFL

SAGE

Peach

Fuzzers Taxonomy

Introspection

Input Generation

Blackbox Greybox Whitebox

Generational
(grammar based)

Hybrid

Mutational



Fuzzers Taxonomy
Introspection

BlackBox Do not require any feedback from the target application.
They may still require information about input specification (e.g. Peach).

GreyBox Extract minimal information from the target.
Usually information is extracted during execution via instrumentation.
(e.g. AFL)

WhiteBox Have a complete knowledge of the internal state.
(e.g. SAGE)



Fuzzers Taxonomy
Input Generation

Generational Generates new testcases using a model of the input.
Usually via a user provided grammar, generation rules or via learning
techniques (e.g. Syzkaller).

Mutational Mutates previous inputs to generate new ones.
They require a set of initial seeds to perform the mutation, usually
lead by feedback from the target. (e.g. AFL)

Hybrid Can perform both input generation and mutation.



Fuzzer Architecture



Fuzzer Architecture
Executor

Is the main component responsible for the
execution of the testcase
Depending on the target the executor can change a lot,
from a simple forkserver, to virtual machine, to a fully
fledged hypervisor.



Fuzzer Architecture
Input

The representation of the program input
Could be a: 

A simple ByteArray 
A sequence of System Calls
A list of transactions
...



Fuzzer Architecture
Corpus

The storage for the inputs
Contains 2 main classes of inputs:

Solutions (e.g. inputs that make the program crash)
Interesting (e.g. inputs which are queued for
mutation)



It is the component which performs the
testcase generation
The simples generator could be a random generator,
however according to the target a grammar or model
could be provided which describe the input structure.
e.g. Grammar based kernel fuzzing requires a syscall
grammar to be provided for testcase generation.

Fuzzer Architecture
Generator



Fuzzer Architecture
Scheduler

Orchestrate the order in which testcases will
be selected
Many different strategies could be implemented by a
scheduler.
The simplest possible implementation could be a FIFO
queue, however one branch of fuzzing research focuses
on developing highly optimised scheduling algorithm.



Fuzzer Architecture
Stage

Defines the operation to be performed on the
testcase
Is a very generic entity which receives the testcase
selected by the scheduler and performs a series of
operation. (e.g. mutation, taint tracking, ...)



Fuzzer Architecture
Mutator

It is the component which performs the
testcase mutation
One other important focus of fuzzing research, different
mutation strategies could be theorized according to the
input type and tartet.
Some emplyed techniques include:

bit-flipping
splicing
block swapping
truncating
expanding



Fuzzer Architecture
Observer

Provides information about a single
execution
On important example is the coverage map used by AFL,
which is a bytestring where each byte represent how
many times the corresponding edge was executed.

0 1

2 3 4 5

202122232425

map[2 ]++i



Instrumentation

It refers to the process of modifying the binary with
additional code that allow the observability and analysis
during execution
It is usually done as a custom compiler pass which allow injecting custom
instructions in key points of the execution without modifying the source
code



Fuzzer Architecture
Feedback

It classifies the outcome of the execution
It is deeply linked with the observer, the feedback
analyses the information provided by the observer, for
example to determine whether the testcase could be
considered interesting and add it to the corpus.



Sanitizers

Sanitizers are runtime analysis tools that detect various classes
of bugs and security vulnerabilities

Sanitizers operate by injecting checks into the program, either at compile time or
dynamically, to catch problematic behavior as it occurs.
E.g.:

AddressSanitizer (ASan)
UndefinedBehaviorSanitizer (UBSan) 
ThreadSanitizer (TSan)



Sanitizer
AddressSanitizer

https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf


State Of The Art: AFL++

https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf

Coverage-guided Graybox fuzzer

https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf


Not Only
Binary


