N

s

s
X

F
u
Z
Z
T
est
IN

g



LibAFL: A Framework to Bu.

Andrea Fioraldi
EURECA
floraldigneure com fr

Dongjia Zhang
The Unbversity of Tokya
toka@aflplus.plus

ABSTRACT

The release of AFL marked an important milestomne in the area of
sodtware security testing, revitalizing furzing as 2 major ressarch
topic and spurring a large rumber of research studies that attempted
ko imprave and evaluate the different aspects of the fuzzmg pipeline.

Many of these studies implemented their technigues by borking
the AFL codebase. While this choice might sesm appropmate at
first, combining multiple forks ioto a single fuzxer requires a high
engineering overhead, which hinders progress in the area and pre-
wents fair and ohjective evaluations of different techniquoes. The
highly fragmented landscape of the fuzzing ecosystem also prevents
researchers from combining arthogonal techndgues and makes it
difficult for end users to adopt new prototype salutions.

To tackle this problem, in this paper we propase LinAFL, a frame-
wark to build modular and rewsable fozzers, We discuss the different
companents generally used in fuzzing and map them to an extensi-
ble framework. LinAFL allows researchers and engineers to extend
the core fuzzer pipeline and share their new components for fur-
ther evaluations. As part of LisAFL, we integrated techniqoes from
mare than 20 previows works and conduct extensive experiments
to show the benefit of our framewark to combine and evaluate dif-
ferent approaches. We hope this can help to shed light on corrent
advancements in fuzzing and provide a solid base for comparative
and extensihle research in the fabure.

ACHM Beferemce Formatf;

Andres Floralds, Diomimik Maver, Dongjia Zhang, and Davide Balzaroti
2022 LibAFL: A& Fremework o Palld Modulsr end Reusable Puzzers. In

Progeedings af dhe 2072 ACK SIGEAC Conference on Compurer and Commend
aqdions Securiry (008 219 Novessber T- 11, 2022, [Los .-'Iﬂgtl'ﬁ_ AL AL ACM,
Mew Yok, NY, USA, 15 pages. hitpsy idolorg/ L0 VLES! 354R506 A560802

1 INTRODUCTION

Fuzzersare toals designed to execute a target application witha large
number of antomatically-generated mputs. Their goal @5 to discover
problematic states, often associated with the pressnce of security
wulnerabalities. Becanse of their efechveness, fuzzers have become
an essential asset in the arsenal of both developers and security
researchers.

Many off-the-zhelf furzers are available to the public, same of
which are now considered de-facto standards for general-purpose

This =merk B loenssd under g Cregtioe Cammions & Hrisatkn-
Sharcilikr Internabiorsl 4.8 Loerar.

CUF F Noamber P=11, 332 Lar Anpedee, O, LS4
& F3E Copyrighi hebd by ihe samerranihoris)
SN ISEN ST 1500 R0/ 25 1]

hitps i Largr 10 H S 54 8 de, 1 5ade0g

applications: AFL [To,

[47]. These fuzzers are .

example, routinely discove.

entensive fuzzing effort for op.
Unfortunately, whibe off-the-s

easy to set up and nse for non-

tations for experienced wser

or to adapt to different by

kermels, devace drivers

bo creating new: fuzzes

- Reference:

terms af rep-
numeber o

e LibAFL: A Framework to build modular and

thr

reusable fuzzers.

th.

byte

tured a.

ized {Ehu
This pro.

lights the lack

-mame  A. Floraldi, D. Maier, D. Zhang, D. Balzarotti

EOOTMoUS mumber o
high-level concepts ina
level categorization is s
and their relationships are .
framework according to this o

The fragmentation of the fe
consequences on the ressarch in th.

{1} Orthogonal contributions are difficul,
Several hundred, it not thousands, of o
have been proposed in the last decade to i
niess of furz testing. However, a new corpe
mented ontapof AFL cannot be eastly comibined .
tor implemented ina custom fuzzer. As we mention
hinders the progress of fuzzing as a whale. Eachino,
focuses on a few advanced techniques but cannot take a.
of ather orthogonal approaches proposed by other resea.

CCS 2022



What is Fuzzing

Fuzzers are tools designed to execute a target application
with a large number of automatically-generated inputs,
with the goal of discover problematic states (crashes,
exceptions, non termination), often associated with security

vulnerabilities.
_T:ZEiéiq @

e

Evolution of the testcase
with subsequent mutations



[ SVIANNE S

Fuzzers Taxonomy

Input Generation

Google Scholar fuzzing

Articoli Circa 1.310 risultati

>

Mutational I A
AFL
. A
Hybrld » SAGE
Generational @ A A
(@rammar based) Peach Syzkaller
O O O
Blackbox Greybox  Whitebox

Introspection



[ SVIANNE S

Fuzzers Taxonomy

Introspection

Do not require any feedback from the target application.
BlackBox

They may still require information about input specification (e.g. Peach).

Extract minimal information from the target.
G I’ey BOX Usually information is extracted during execution via instrumentation.
(e.g. AFL)

- Have a complete knowledge of the internal state.
WhiteBox
(e.g. SAGE)



[ SVIANNE S

Fuzzers Taxonomy

Input Generation

. Generates new testcases using a model of the input.
Generatlonal Usually via a user provided grammar, generation rules or via learning

techniques (e.g. Syzkaller).

. Mutates previous inputs to generate new ones.
M Utatlonal They require a set of initial seeds to perform the mutation, usually

lead by feedback from the target. (e.g. AFL)

Hyb”d Can perform both input generation and mutation.



Fuzzer Architecture

LibAFL \ \ .
Solutions Corpus o Scheduler Mutators Tracers
y : |
Testeases ;
ll Eh}dﬂl]l [-‘ "L‘''''''----_______---""""n‘l ".\'-'''''---_______---"""".‘lI 1 nthtjv{hs \
Y 2 - Executor
_ _[ Feedback States n Feedhacks Harness Input I\
Message Passing { h ‘ ' 1
' Metadata Target
Event Manager 7/ Fuzz One fj'[ _
Process Pending ’/ I
L ' - (Observer
Fire Events - ; Input Evaluation /‘ 1 BETVRrS




[ SVIANNE S

Fuzzer Architecture

Executor

Is the main component responsible for the
execution of the testcase

Depending on the target the executor can change a lot,
from a simple forkserver, to virtual machine, to a fully
fledged hypervisor.

Executor \
Harness | Input I\
T
Target
Observers




[ SVIANNE S

Fuzzer Architecture

Input

The representation of the program input

Could be a:
e A simple ByteArray
e A sequence of System Calls
e A list of transactions

N\

Executor
Har» ll Input

N

Target

_1_?

ODhservers




[ SVIANNE S

Fuzzer Architecture

Corpus
State
The storage for the inputs | Solutions Lol
Contains 2 main classes of inputs: u‘ Testeases
e Solutions (e.g. inputs that make the program crash) o e —
e Interesting (e.g. inputs which are queued for
mutation) _“ Feedback States

Metadata




[ SVIANNE S

Fuzzer Architecture

Generator

It is the component which performs the
testcase generation

The simples generator could be a random generator,
however according to the target a grammar or model
could be provided which describe the input structure.
e.g. Grammar based kernel fuzzing requires a syscall
grammar to be provided for testcase generation.




[ SVIANNE S

Fuzzer Architecture

Scheduler

Orchestrate the order in which testcases will
be selected

Many different strategies could be implemented by a
scheduler.

The simplest possible implementation could be a FIFO
queue, however one branch of fuzzing research focuses
on developing highly optimised scheduling algorithm.

Fuzzer
Scheduler
Objectives
M Feedbacks
7/ Fuzz One

Input Evaluation

T T




[ SVIANNE S

Fuzzer Architecture

Stage

Defines the operation to be performed on the
testcase

Is a very generic entity which receives the testcase
selected by the scheduler and performs a series of
operation. (e.g. mutation, taint tracking, ...)

Stages

Mutators

Tracers




[ SVIANNE S

Fuzzer Architecture

Mutator

It is the component which performs the
testcase mutation

One other important focus of fuzzing research, different
mutation strategies could be theorized according to the
Input type and tartet.
Some emplyed techniques include:

o bit-flipping

e splicing

e block swapping

e truncating

e expanding

Mutators

Tracers




[ SVIANNE S

Fuzzer Architecture

Observer

Provides information about a single
execution

On important example is the coverage map used by AFL,
which is a bytestring where each byte represent how
many times the corresponding edge was executed.

map[2*]++

Executor

N\

Harness

Input

N

ODhservers




[ SVIANNE S

Instrumentation

It refers to the process of modifying the binary with
additional code that allow the observability and analysis
during execution

It is usually done as a custom compiler pass which allow injecting custom
instructions in key points of the execution without modifying the source
code

INSTRUMENTATION

(000

Instrumented

Source Code

Program
A\, g _J

feedback




[ SVIANNE S

Fuzzer Architecture

Feedback

It classifies the outcome of the execution

It is deeply linked with the observer, the feedback
analyses the information provided by the observer, for
example to determine whether the testcase could be
considered interesting and add it to the corpus.

Fuezer

Scheduler

Feedbhacks

Fuzz One

Input Evaluation

T




[ SVIANNE S

Sanitizers

Sanitizers are runtime analysis tools that detect various classes
of bugs and security vulnerabilities

Sanitizers operate by injecting checks into the program, either at compile time or
dynamically, to catch problematic behavior as it occurs.
E.g.:

e AddressSanitizer (ASan)

e UndefinedBehaviorSanitizer (UBSan)

e ThreadSanitizer (TSan)



https:

programing > cpp > asan

Ny

p test.cc > ..

int main(int argc

{

int #arr

deletel[] array;

dy

= new int[100];

¥ »

i

L TH

JE RO
A% =

3L

www.usenix.org/system/files/conference

) Sanitizer

AddressSanitizer

09:13:31]% ./test

READ of size 4 at 0x614000000044 thread TO

#0 0x4f584e in main /data/home/gerryyang/github/mac-utils/programing/cpp/asan/test.cc:6:12
__libc_start_main (/1ib64/1ibc.so0.6+0x26192)
#2 0x41f31d in _start (/data/home/gerryyang/github/mac-utils/programing/cpp/asan/test+0x41f31d)

#1 0x7f0d859def92 in

0x614000000044 is located 4 bytes inside of 400-byte region [0x614000000040,0x6140000001d0)

freed by thread T@ here:
#0 0x4f35c@ in operator delete[] (voidx) /data/home/gerryyang/tools/clang/1llvm-project-11.0.0/compiler-rt/1lib/asan/asan_new_delete.cpp:163:3

#1 0x4f58le in main /data/home/gerryyang/github/mac-utils/programing/cpp/asan/test.cc:5:5

#2 0x7f0d859def92 in _ libc_start_main (/1ib64/1libc.so.6+0x26192)

previously allocated by thread T@ here:

atcl?

-final39.pdf

#0 @x4f2c28 in operator new[] (unsigned long) /data/home/gerryyang/tools/clang/llvm-project-11.0.0/compiler-rt/lib/asan/asan_new_delete.cpp:102:3

#1 0x4f5813 in main /data/home/gerryyang/github/mac-utils/programing/cpp/asan/test.cc:4:18

#2 Bx710d859def92 in __libc_start_main (/1ib64/libc.so.6+0x26192)

SUMMARY: AddressSanitizer: heap-use-after-free /data/home/gerryyang/github/mac-utils/programing/cpp/asan/test.cc:6:12 in main
Shadow bytes around the buggy address:
Ox0c287fff7fb0:
0x0c287fff7fco:
BOx0c287fff7fdo:
0x0c287fff7fed:
BOx@c287fff7ffo:
=>@x0c287ffTB8000:
0x0c287fff8010:
Bx0c287ff18020:
Ox0c287fff8030:
B0x0c287fff8040:
Bx0c287fff8050:

Shadow byte legend (one

Addressable:

Partially addressable:
Heap left redzone:

00 00 00 00 00 @0
00 00 00 00 00 @0
00 00 00 00 00 00
00 00 00 00 00 00
00 60 00 00 00 @0

fd fd fd fd fd fd
fd fd fd fd fd fd
fd fd fd fd fd fd

Freed heap region: fd
Stack left redzone:

Stack mid redzone:

Stack right redzone:

Stack after return:

Stack use after scope:

Global redzone

Global init order:
Poisoned by user:
Container overflow:

Array cookie:

Intra object redzone:

ASan internal:

Left alloca redzone:
Right alloca redzone:

Shadow gap:

==3914591==ABORTING

00
00
00
00
00

fd
fd
fd

00 00 00
00 00 00
00 00 00
00 @00 00
00 00 00
fa[fd]fd
fd fd fd
fd fd fd
fd fd fd

00
00
00
00
00
fd
fd
fd

00
00
00
00
00
fd
fd
fd

00
00
00
00
00
fd
fd
fd

00
00
00
00
00
fd
fd
Td

00
00
00
00
00
fd
fd
fd

00
00
00
00
00
fd
fd
fd

shadow byte represents 8 application bytes):
00
01 02 03 04 05 06 07



https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

State Of The Art: AFL++

Coverage-guided Graybox fuzzer

AFL#+: Combining Incremental Steps of Fuzzing Research

Andrea Fioraldi’, Dominik Maier', Heiko EiBfeldt, Marc Heuse®
fandrea, dominik, heiko, mare} @ afiplus.plus
Thapienza Universiny of Rome, 3TV Berlin, 4 The Hacker's Choice

Ahbstract

In this paper, we present AFL*, a commumity-driven open-
source tool that incorporates state-of-the-art fuzzing research,
to make the research comparable, reproducible, combinable
and — most importantly — useable. It offers a varety of novel
features, for example its Custom Mutator API, able to extend
the fuzzing process at many stages. With it, mutators for
specific targets can also be written by experienced security
testers. We hope for AFL** to become a new baseline tool
not only for current, but also for futare research, as it allows
o test new techniques quickly, and evaluate not only the
effectiveness of the single technique versus the state-of-the-
art, but also in combination with other techniques. The paper
gives an evaluation of hand-picked fuzzing technologies —
shining light on the fact that while each novel fuzzing method
can mmcrease performance in some targets — it decreases
performance for other targets. This is an insight future fuzzing
research should consider in their evaluations.

to combine functionality with the compatible techniques that
address different, but related problems in fuzzing — for ex-
ample picking a recent seed scheduling for their mutator. A
new feedback concept may not live up to its full potential if

1t cannot be combined with existing techniques solving other
problems — like overcoming hard companson instruchons —
reducing the impact of the research on paper due to lackluster
statistics.

In this paper, we try o solve these problems by raising
the bar of broadly available, research-backed, fuzzing, and
by giving rescarchers an extensible APQ to buld upon. We
propose & novel fuzzing framework, AFL#++. Future research
can use AFL** as a new baseline. 1t gives researchers the
possibility to evaluate combinations of their proposals with
state-of-the-art orthogonal features already implemented in
AFL#** — with a highly reduced implementation effort. At
the same time, it offers industry professionals a large range
of easy-to-use features adapted from cutting-edge research,
that can greatly improve the outcome of a fuzzing campaign.



https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf

Nyx-Net: Network Fuzzing with
Incremental Snapshots

Not Only
Binary

Sergej Schumilo!, Cornelins Acel- /

cilitating Non-Intrusive In-Vivo Firmware

. . , | R
Testing with Stateless Instrumentation . ty Summit 201
obile Securtty
Qualcomm Mkcw (@vy ukov@): Google

syzkaller

the next gen kernel fuzzer

Dmitry Vyu
1ieng Shi Wengiang Li Wenwen Wang Le Guan
ty of Georgia Independent Researcher University of Georgia University of Georg
g@uga.edu wengiang-li@outlook.com wenwen@cs.uga.edu leguan@uga.edu

\ SMARTIAN: Enhancing Smart Contract Fuzzing

Dr OldFuZz i with Static and Dynamic Data-Flow Analyses
er: Fuzzing t
e

Jaeseung Choi* Doyeon Kim*f Soomin Kim
KAIST LINE Plus Corporation KAIST

: ’ n » Andr oi jschoil7 @kaist.ac.kr doyeon1017 @linecorp.com soomink @kaist.ac kr
Hui yg1 sh tent-F,’ d Apps Wiﬂ

U 1 Ye! . ter
nlvers,[yzof Sci aoyin Ch Ta g

e n q Gustavo Grieco Alex Groce Sang Kil Cha
e
l Inn . r!ce and Tﬂh‘n._ g. ’ Lanbo 7"1.-..* y

Trail of Bits Northern Arizona University KAIST
oustavo.erieco @trailofbits.com alex.oroce @nau.edu sanckilc @kaist.ac.kr




